PHYSICAL REVIEW E 75, 011410 (2007)

Lamellar order, microphase structures, and glassy phase in a field theoretic model
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In this paper we present a detailed analytical study of the phase diagram and of the structural properties of
a field theoretic model with a short-range attraction and a competing long-range screened repulsion. We
provide a full derivation and expanded discussion and digression on results previously reported briefly in M.
Tarzia and A. Coniglio, Phys. Rev. Lett. 96, 075702 (2006). The model contains the essential features of the
effective interaction potential among charged colloids in polymeric solutions. We employ the self-consistent
Hartree approximation and a replica approach, and we show that varying the parameters of the repulsive
potential and the temperature yields a phase coexistence, a lamellar and a glassy phase. Our results suggest that
the cluster phase observed in charged colloids might be the signature of an underlying equilibrium lamellar
phase, hidden on experimental time scales, and emphasize that the formation of microphase structures may

play a prominent role in the process of colloidal gelation.

DOI: 10.1103/PhysRevE.75.011410

I. INTRODUCTION

Colloidal suspensions are solutions of solid (or liquid)
mesoscopic particles immersed into another substance [1].
These systems, like blood, proteins in water, milk, inks, or
paints, are ubiquitous in our everyday life and are extremely
important in biology and industry. Due to their potential ap-
plications for designing new materials with a wide range of
viscoelastic properties, recently there has been much interest
in the role of the interparticle potential on controlling the
structural and dynamical properties of colloidal systems. By
appropriately varying some control parameters (such as the
composition of the solvent, the coating of the particles, the
concentration of the polymers into the solvent...) the effec-
tive interaction potential between colloids can be suitably
tuned in experiments. It is possible to realize a hard-sphere
system [2]; by adding nonadsorbing polymers, the hard-
sphere interaction can be complemented by a short-range at-
traction, induced by depletion forces [3]. Recent experimen-
tal work outlined that in some cases a residual net charge on
the surface of colloidal particles may be present [4,5],
thereby inducing a long-range electrostatic repulsion
screened by the presence of ions in the solution. The result-
ing effective interaction is therefore given by a hard-core
term accounting for the excluded volume, a depletion-
induced narrow attractive shell and a long-range repulsive
shoulder. This kind of potential is well approximated by the
DLVO (after Derjaguin, Landau, Verwey, and Overbeek) po-
tential [6]. Interestingly enough, the parameters of the poten-
tial can be suitably tuned in the experiments. The depth of
the attractive shell is controlled by the concentration of the
polymers, ¢,, which therefore plays the role of an inverse
temperature, whereas its range is proportional to the ratio
between the radius of the colloids, o, and the gyration radius
of the polymers, R, (typically one has 0.05<R,/0<0.2).
On the other hand, the addition of salt increases the number
of ions in the solution responsible for the screening of the
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electrostatic repulsion, thereby reducing the amplitude and
increasing the screening length of the Yukawa potential.

Charged colloids in polymeric solutions have recently
raised a lot of interest, both from an experimental [4,5,7] and
a theoretical [8—14] point of view. In these systems the com-
petition between attractive and repulsive interactions on dif-
ferent length scales stabilizes the formation of aggregates of
an optimal size and shape (cluster phase), characterized by a
peak of the structure factor around a typical wave vector, k,,,.
Experimentally, such a cluster phase, made up by approxi-
mately monodisperse equilibrium aggregates, can be clearly
observed using confocal microscopy at low volume fraction
and low temperature (high attraction strength) [4,5,7]. By
appropriately tuning the control parameters (i.e., increasing
the volume fraction or decreasing the temperature) the sys-
tem progressively evolves toward a gel-like non-ergodic dis-
ordered state [5,7] (colloidal gelation), where structural ar-
rest occurs. Although intensely studied both experimentally
and numerically, a theoretical understanding of these phe-
nomena is still lacking: the mechanisms inducing colloidal
gelation are still unknown and many gaps remain in our
present knowledge of the equilibrium phase diagram of these
systems. In Ref. [8], it has been proposed that colloidal ge-
lation is related to the formation of a Wigner glass, whose
blocks are compact and thermodynamically stable clusters,
with a residual long-range repulsion between them. In Ref.
[10] the percolative nature of the structural arrest in charged
colloids was highlighted, suggesting that percolation of a
spanning network of clusters with long living bonds plays a
crucial role. More recently, it has been suggested that the
formation of partially ordered anisotropic domains and mi-
crophase structures may be responsible for physical gelation
in these systems [11,13,14].

In a recent paper [13], we have introduced a ¢* model
with competition between a short-range attraction, described
by the Ginzburg-Landau Hamiltonian, and a long-range
screened repulsion, described by a Yukawa potential [15].
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Albeit schematically, the model contains the essential fea-
tures of the effective interaction potential among charged
colloids in polymeric solutions and sheds light on the struc-
tural properties of these systems. Here we present a detailed
and extensive analytical study of this model, and a full deri-
vation and explanation of the results previously reported
briefly in Ref. [13].

We show that depending on the control parameters, there
is a region of the phase diagram where usual phase separa-
tion between a colloid-rich and a colloid-poor phase takes
place. Conversely, as the screening length and/or the strength
of the repulsion exceeds a threshold value, phase separation
is prevented. In this case, at moderately high temperature the
competition between attraction and repulsion has the effect
to produce microphase structures, i.e., partially ordered
modulated domains which in the terminology of particle sys-
tems correspond to the cluster phase. These modulated struc-
tures are the precursors of a first order transition to an equi-
librium lamellar phase found at lower temperatures. By using
a replica approach for systems without quenched disorder
[16,17], and by employing the self-consistent screening ap-
proximation (SCSA) [18,19], we also show the presence of a
glass transition line in the low temperature region, once the
first order transition to the lamellar phase is avoided. The
mechanism responsible for the glass transition in this case
turns out to be completely different from that of molecular
glass formers: as a matter of fact, we find that glassiness is
not due to the presence of a hard-core interaction, which is
totally absent in our model; it is instead due to the formation
of the microphase structures which order up to the size of
correlation length. The geometric frustration, arising from
arranging such modulated structures in a disordered fashion,
leads to a complex free energy landscape and, consequently,
to a dynamical slowing down.

Our results suggest that the cluster phase observed in col-
loidal suspensions should be followed, upon decreasing the
temperature (or increasing the volume fraction), by an equi-
librium periodic phase (a columnar or a lamellar phase, de-
pending on the volume fraction). If, instead, this ordered
phase is avoided, a structural arrest, corresponding to the gel
phase observed in the experiments and in numerical simula-
tions, should eventually occur. Recently, the presence of such
ordered phases in atomistic model systems of charged col-
loids interacting via the DLVO potential, has been unam-
biguously shown both in three [11,14] and in two [11,12]
dimensions.

The paper is organized as follows: in Sec. II we describe
the model; in Sec. III we study the model within the self-
consistent Hartree approximation; in Sec. IV we analyze the
dynamics of the system in the spherical limit; in Sec. V we
study the glass transition; in Sec. VI we compute the pair
correlation function of the system in real space, showing the
emergence of competing length scales and emphasize the
prominent role of microphase structures; in Sec. VII we sum-
marize the results found: we discuss the resulting phase dia-
gram and stress the connections with charged colloids. Some
details of the calculations are reported in Appendixes A-D.
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II. THE MODEL

We consider the standard three-dimensional ¢* field
theory with the addition of a repulsive long-range potential

[13]:
7ﬂ@=f&4ﬂ@+5Vdﬂ%+Hmwl (n

where ¢(x) is the scalar order parameter field, related to the
concentration of colloidal particles. The local free energy has
the usual Ginzburg-Landau form:

)= Lo+ LT @

The coefficient r, is a temperature dependent mass propor-
tional to the deviation oo T—T"" from the mean field tran-
sition temperature in absence of frustration. The long-range
repulsive interaction is described by a Yukawa potential:
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The local term favors the formation of a uniform condensed
phase, while the long-range term energetically frustrates this
condensation. In the momentum space the Hamiltonian of
Eq. (1) reads:
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The model has been also studied in Ref. [20] in the context
of microemulsion. The parameters W and \ are, respectively,
the strength and the range of the repulsive potential. For W
=0 we obtain the canonical short-range ferromagnet. Inter-
estingly, for A — o we recover the case of Coulomb interac-
tion. The latter model was introduced in Ref. [21], in the
context of cuprate systems. Then, it has been further studied
in many other papers (see, for instance, Refs. [22-27]) where
it has been used to describe the phenomenology of a wide
variety of systems, where competing interactions on different
length scales stabilize pattern formation and the creation of
spatial inhomogeneities (for a review see Ref. [28]). These
systems include magnetic systems and dipolar fluids charac-
terized by long-range Coulombic interactions [29], mixtures
of block copolymers [30], water-oil-surfactant mixtures [31],
and doped Mott insulator, including high T, superconductors
[32]. As a consequence, our model allows us to describe and
to interpret in a unified fashion the phenomenology of a
broad range of different physical systems.

III. PARAMAGNETIC, FERROMAGNETIC, AND
LAMELLAR PHASES WITHIN THE HARTREE
APPROXIMATION

In this section we solve the model, Eq. (1), within the
self-consistent Hartree approximation. This approximation
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amounts in replacing one factor ¢? in the quartic term by its
average, namely (¢?), to be determined self-consistently
[33]. For a one component order parameter there are six
ways of choosing the two factors of ¢ to be paired in (¢?)
among the four factors of ¢ in the quartic term g¢*/4.
Hence, the self-consistent Hartree approximation consists in
substituting the term g¢*/4 with 3g($?*)¢*/2. With this sub-

stitution, the Hamiltonian becomes quadratic:

BY 2N 2 477W
Z:fp(ﬁke f(2 )3[r0+3g<¢ Y+k+

M¢ (5)

It is then possible to compute Z and evaluate the correlation
function:

G(K) = (P P_y) — ()X D). (6)
In the paramagnetic phase, {(¢,)=0, one obtains
T
G(k) = ,
ro+3 <¢2>+k2+4w—w
o+ 8 + K>
T
e (7)
) 47w
r+k°+ = 3
+k

where the renormalized mass term, r, has been defined as

r=ro+3g(¢?). (8)

We now recall that

(#%) = G(x,x) = f X G, 9)
[K|<A (277)3
where A is the ultraviolet cutoff. As a result, Egs. (8) and (9)
yield
+3 f d'k T (10)
r=ry 8 ’
Ko @M o AW
N2+ kP

which provides a self-consistent equation for the renormal-
ized mass r. It can be shown that, apart from the factor 3, this
approximation becomes exact for an N-component order pa-
rameter in the limit N— oo [33].

In order to solve the self-consistent equation, Eq. (10), it
is convenient to define

1

chm, (11)

and distinguish between two cases: W<W, and W>W.,.

A W<W,

For W< W, the correlation function, G(k), behaves as in
the standard unfrustrated case: it is a monotonically decreas-
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FIG. 1. (Color online) Main frame: Phase diagram of the model
obtained within the self-consistent Hartree approximation, in the
frustration (47W)-temperature (7) plane, for a fixed range of the
repulsive potential, \=2 (and g=1, ry=—1). The temperature is re-
scaled with respect to the critical temperature of the unfrustrated
model, T.(W=0)=272/3A (and is, therefore dimensionless). The
(red) continuous curve, T.(W,\), corresponds to the second-order
phase transition from the paramagnetic to the ferromagnetic phase
(with the usual Hartree critical exponents, v=1 and y=2), whereas
the (blue) dashed curve corresponds to the fluctuation-induced first
order transition from the paramagnetic to the lamellar phase,
T;(W,N). W, is the critical threshold of the repulsion strength, Eq.
(11). (The frustration has the dimensions of an energy divided by a
length squared. Notice that in this paper the unity of measures are
set in such a way that the elementary length of a lattice spacing, is
equal to one, the elementary charge of a particle equals one, as well
as the dielectric constant.) Inset: System phase diagram in the range
(N\)-frustration (W) plane for a fixed temperature 7=0.1, showing
the relative position of the different phases. (W has the dimensions
of an energy divided by a length squared, while \ has the dimen-
sions of a length.)

T

Gk=0)=—"".
( ) r+47WA2

(12)

Therefore, as r— —47WA?, the susceptibility, y=G(k=0)/T,
diverges. This corresponds to a usual second order phase
transition towards a ferromagnetic phase. From Eq. (10), one
can compute the critical temperature, T,(W,\), given by the
following relation:

3gT. Adk 1+

272 w -
0 <1+—)+k2
w

c

—47WN2. (13)

It is possible to show that the usual Hartree critical expo-
nents are found, i.e., v=1 and y=2 (see Appendix A). In the
terminology of colloidal suspensions, this means that for 7
<T, the system undergoes a phase separation between a
colloid-rich and a colloid-poor phase. The dependence of the
critical temperature, T.(W,\), upon W (for A=2 and ry=-1)
is plotted in the main frame of Fig. 1 (red continuous line),
showing that the only effect of the repulsive interaction for
W< W, is to decrease the numerical value of 7: for W=0 we
recover the usual critical temperature of the unfrustrated sys-
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—2772r0 .
3eh (notice

tem in the Hartree approximation, T.(W=0)=
that r,<<0), whereas T, vanishes as W— W..

B. W>W,

Conversely, if W>W,, the correlation function has a
maximum around a finite value of the wave vector, k,,:

k= (V4mW =NV = (4m) (W= \W)'2. (14)

As we shall discuss later, the peak in the correlator indicates
that the system establishes microphase structures with in-
verse domain size given by k,,,, which characterize the incipi-
ent periodic order. Such modulated structures are the analog
of the cluster phase observed in colloidal systems character-
ized, also in this case, by a peak in the structure factor
around a characteristic wave vector corresponding to the in-
verse of the typical size of the clusters [5,7-10].

In k=k,,, the correlation function is given by

T

G(k|=k,)=—F——.
i r+2V4TW - \"7?

(15)
Therefore, G(|k|=k,) and, consequently, the fluctuations,
x(k|=k,,), diverge for r— rspE)\‘2—2\e’mV. As a result,
also the integral of the right-hand side of Eq. (10) diverges,
and the self-consistent Hartree relation can be satisfied only
at 7=0. This implies that for W> W, the paramagnetic phase
is stable at all finite temperatures, its spinodal line, where the
susceptibility for |k|=k,, diverges, x(k,,) — o, is located at
T=0. Therefore above W, there is no phase separation. This
result is quite important for designing new materials as well
as in the experimental and numerical study of colloidal sys-
tems, where it is crucial to distinguish the slowing down due
to colloidal gelation from that due to kinetic of phase sepa-
ration.

Nevertheless, the system still undergoes a first order tran-
sition to a lamellar phase when the temperature is lowered
below T;(W,\) (blue dashed line in Fig. 1). Such first order
phase transition is induced by the fluctuations, as discussed
by Brazovskii for a related model [34] and as also found in
the Coluombic case (A — o) [27]. The transition temperature
T, (W,\) can be determined on equating the free energy of
the paramagnetic phase to that of the lamellar phase [27], as
explained in Appendix B.

The lamellar phase is characterized by a periodic variation
of the order parameter with wavelength l,,,:277k;1':

() =m[ok -k,) + ok +k,)], (16)

where k,, is given in Eq. (14). Note that as W approaches W,
from above, according to Eq. (14), k,, vanishes. This signals
the fact that the size of the stripes diverges on the boundary
between the lamellar and the ferromagnetic phase.

Within the fluctuation approach described in Appendix B,
it is also possible to study the stability of other kinds of
ordered phases, such as columnar or periodically ordered
cluster phases, which occur in numerical simulations [12,14].
In fact, it turns out that these phases can be stable besides the
lamellar phase, at lower volume fractions, i.e., for (i)
< 0. However, in this paper we only focus on the case
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(o) =0, [i.e., Jd*x(¢(x))=0] where the only periodically
ordered stable phase is the lamellar one.

C. Phase diagram within the Hartree approximation

The results found within the self-consistent Hartree ap-
proximation are summarized in Fig. 1, where the system
phase diagram in the frustration (47W)-temperature (7)
plane at fixed screening length A=2 (main frame) and in the
screening length (\)-frustration (W) plane at fixed tempera-
ture 7=0.1 (inset), is plotted, showing the relative positions
of the paramagnetic (P), the ferromagnetic (F) and the lamel-
lar (L) phases.

According to Eq. (11), by changing N, W, changes and,
hence, the phase diagram modifies. For instance, in the Cou-
lomb limit, A — %, we have that W.—0. As a consequence,
the ferromagnetic phase reduces to the axis W=0, for T
<T.W=0). Conversely, for A\ — 0 we have that W.— o and
the lamellar phase disappears. It is interesting to observe that
the dependence of the threshold W, on the screening length A
is exactly the same as that found in numerical simulations of
a model system for charged colloids interacting via a DLVO
potential [9]: the authors find that for W<W, the system
tends to phase separate, whereas for W> W, the preferred
structures are elongated (and eventually quasi-one-
dimensional) finite clusters. Physically, such threshold value,
W,, can be interpreted expanding the Hamiltonian, Eq. (4),
up to the lowest order in k%

H ~‘—/fd3—k 47WA?) + (1 = 47WAH K>
[¢]—2 (277)3[(’”0"‘ ™ )+ (1 -4 k"] b
gV [ 'k &'k, dks
T4 ) QP en) 2]

i, b, B, ik,
(17)

At W=W, the coefficient of the k> term vanishes, implying
that there is no energetic cost associated to the creation of
interfaces between high density and low density regions,
leading to pattern formation and to the creation of spatial
inhomogeneities.

IV. DYNAMICS IN THE SPHERICAL LIMIT

In this section we study the dynamics of the model in the
case of an N-component order parameter in the limit N — o,
after an instantaneous quench from high temperature. The
spherical approximation is equivalent to the Hartree approxi-
mation described in the previous section [apart from the fac-
tor 3 in Eq. (10)], and allows us to study the dynamics ana-
Iytically. We solve the time dependent Cahan-Hilliard
equation [35], following the approach taken in Refs. [36].
We obtain an exact analytical solution for the evolution of
the time dependent structure factor of the system, G(k,1),
and for the peak position, k(7). In agreement with the
results presented in the previous section, we find that as W
<W,, the usual spinodal decomposition occurs, and the
maximum of the structure factor approaches zero as =/ for
large times. This corresponds to phase separation between a
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high density colloid-rich phase and low density colloid-poor
one. On the other hand, for W> W, provided that we are on
the spinodal line of the lamellar phase (7=0), the peak po-
sition approaches a nonzero value, k,,, given in Eq. (14), and
the structure factor asymptotically approaches a S-function
peaked around k,,, signaling a lamellar order. However, since
the paramagnetic phase is stable at all finite temepratures, for
T>0 we find that the lamellar phase starts to form locally,
but then fades away after a long time and the system stays
homogeneous: k,,,,(¢f) approaches a limiting value where the
structure factor vanishes exponentially.
Let us consider the Cahan-Hilliard equation [35]:

Ip(x,0) -, SH[ (x,1)]

at =M Sp(x,1) (18)

where M is related to the mobility, and H is given in Eq. (1).
For an N-component order parameter the above equation
reads

Ipa(x,1) X
Rl MV2[ ( + %2} Fx) - v2> ba(x.1)

—|x x'|/\
+wfd* : Pul’, ”} (19)

[x—x'|

In the limit N— o we recover the spherical model replacing
—EN 1gbﬁ(x t) by <¢ (x,1)). Here (-) represents an ensemble
average over the initial configurations. By assuming the
translational invariance of the pair correlation function
the  quantity
(¢*(x,1))=G(0,1)=S(t) becomes independent of the posi-
tion x. Thus, dropping the index «, taking the Fourier trans-
form over the space of Eq. (19) and multiplying both sides
by ¢,(-k,r) we obtain the equation of motion for the time
dependent structure factor, G(K,1)=(¢,(K,1) P, (-K,1)):

JG(k,1)
ot

W }G(k,t).

=— M| r+gS(t)+ K+
[r g8(1) EIS

(20)
By replacing ﬁEZzlcﬁé(x,t) by S(7) we have, in fact, enabled

a linearization of Eq. (19), “preaveraging” the nonlinear
term. Now Eq. (20) can be readily integrated to obtain

G(k,1) = G(k, O)e'M"Z[Q(’)"kz’* 4’”2’2] (1)
where Q(t) is defined by
Q(t):f de'[gS(t") + r]. (22)
0

To complete the solution, S(f) must be computed self-
consistently. As shown in Appendix C, one can obtain an
expression for the time dependent structure factor, Eq. (C7),
and an equation for the evolution of the peak position:
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- )
exp t —()\_2 max(t))z mmt

_pl- 47W\2 172 \r% (23)
- N2+ K0 ] KD

where the function P is given in Eq. (C5). Taking the loga-
rithm of both sides of Eq. (23) and dividing by Mt we obtain
an asymptotic expression for k,,,.(f), Eq. (C8), which is
readily analyzed in the limit — oc. Careful analysis shows
that depending on the values of W and A, different solutions
of this equation are found. In particular, one needs again to
distinguish between the cases W<W, and W>W..

A W<W,
For W< W, the solution of Egs. (23) and (C8) is given by

k., = limk,,, (1) =0, (24)

t—0

corresponding to the usual spinodal decomposition. Using
Eq. (C8) we find that the usual N — oo domain growth expo-
nent of the canonical short-range ferromagnet with con-
served order parameter is found:

K1) ~ 17114, (25)

Obviously, this solution can be obtained provided that we are
below the critical point, r<—47TW)\% [T<T.(W)], otherwise
no spinodal decomposition takes place and the system re-
mains in the paramagnetic phase.

B. W>W,
For W> W, the solution of Egs. (23) and (C8) is given by

k2= \4mW -\ =k, (26)

where the wave vector k., coincides with that defined in Eq.
(14). In this case, the peak position reaches a nonzero steady
state value for large times and the structure factor asymptoti-
cally approaches a d-function peaked around a finite value of
the wave vector k,,. This situation corresponds to the lamel-
lar phase and k,, is the inverse domain size. In particular, for
earlier times [such that 47W <k} (1], using Eq. (C8), we
find that

3 1/4
Kopan(£) ~ (Z In t) 1, (27)

Thus, apart from the logarithmic factor, in this regime k,,,,,()
behaves as the standard solution of the unfrustrated short-
range ferromagnet in the large N limit in the case of usual

spinodal decomposition. However, at later times, k,,,,(¢)
saturates at k,, as a power law:
2 2 12
ko) ~ K, + Ct (28)

According to Eq. (C7), the structure factor G(K,7) can be
approximated by a Gaussian centered about k, and with
width
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(4mw)'
[NAMi(4aW - \2)]

(29)

which in the limit r— o0 approaches a d-function centered in
k,,, as stated before.

However, this situation can occur only provided that we
are on the spinodal line of the lamellar phase, located at T
=0. As discussed in the previous section, the expression of
the spinodal line reads (both in the Hartree approximation
and in the large N limit):

rop(W,N) == 2V47W + \ 72 (30)
Indeed, as r>r,

»(W.N) (ie., T>0), from Eq. (C8) we have
that k,,,,(f) approaches exponentially a limiting value, K
=—(r+\7%)/2:

e—M(W—WSp)z
(t)=ki,+c><—,ﬁ , (31)
Mt

where W,,=(\"?~r)?/16m. Consequently, P, Eq. (C5), as-
ymptotically vanishes in an exponential fashion, signaling
that the periodic pattern fades. At the spinodal line we have
that W=W,,, which gives back Eq. (28).

In conclusion, the analysis of the dynamics in the spheri-
cal limit indicates that for W<<W, the system undergoes a
phase separation between a colloid-rich phase and a colloid-
poor one. On the other hand, for W>W,_ and T>0 the sys-
tem starts to form microphase structures and periodically or-
dered modulated domains, as signaled by a peak in the
structure factor which grows in time and whose position
seems to approach k,,. However, since the paramagnetic
phase is stable at all finite temperatures, the microphase
structures have a finite lifetime. The lamellar order is fully
established only at 7=0.

k2

max

V. THE GLASS TRANSITION

Since the paramagnetic phase is stable at all finite tem-
peratures, the first order transition to the lamellar phase can
be kinetically avoided. It is then possible to supercool the
system in the (metastable) homogeneous phase below the
first order transition line, T;(W,\), as much as one can ob-
tain supercooled liquids by performing fast enough coolings
below the melting temperature avoiding crystallization. Ex-
perimental [37] and numerical [38,39] results show that, in-
deed, these systems exhibit long-time relaxations similar to
that observed in glasses. Recent results have clearly shown
the presence of a glass transition in the Coulomb case (A
— o) [25-27,40].

A. General formalism

In order to study the glass transition in our model, we use
a replica approach introduced in Ref. [16] and then devel-
oped in Ref. [17], formulated to deal with systems without
quenched disorder, which allows us to compute the complex-
ity, 2.

Our aim is to derive the free energy landscape of the
model. The equilibrium free energy, defined as F=—T'ln Z, is
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relevant only if the system is able to explore the entire phase
space. This is not the case in the glassy phase, where the
system is frozen in metastable states. In order to scan the
locally stable field configurations, we introduce an appropri-
ate symmetry breaking field /(x), and compute the following
partition function [16]:

- u
7= | po exp{— g1t [ axtom - ¢(x>12},
(32)
where u denotes the strength of the coupling. Since u >0, the
introduction of the pinning field (x) forces the order param-
eter ¢(x) to assume configurations close to (x). Therefore,
the free energy

f)==Tn Z(y) (33)

will be low if ¢(x) equals configurations which locally mini-
mize H[ ). Thus, in order to scan all metastable states, we
have to sample all configurations of the field i, weighted

with exp[-Bf()]:

f Dyf(Pexpl- BF(¥)]
F= lim ) (34)

o J Dyyexpl- Bf(Y)]

Therefore, F is a weighted average of the free energy in the
various metastable states. If there are only a few local
minima (i.e., a nonextensive number of local minima) of free
energy f equal to F, we have that F equals the true free
energy F of the system. However, in case of the emergence
of an exponentially large number of metastable states with
large barriers between them, a nontrivial contribution arises
from the above integral even in the limit ¥ — 0% and F differs
from F. This allows us to identify the configurational entropy

3 [16,17]:

F=F-T3. (35)

In order to get an explicit expression for X we introduce
replicas. The replicated free energy reads

T ~

F(m)=- lim —1nf DU Z(p) 1", (36)
u—0"

from which, evidently, F can be obtained as

P dmF(m) ’ (37)
om

m=1
and hence, according to Eq. (35)

B l&F(m)

S =
T om

(38)

m=1

Using Eq. (32) and integrating over i, we get
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Z(m) = lim

u—0*

m

J [T Dgexp| -
a=1

B2 H(¢)
a=1

(T)
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2x10'4 RaR%

2><10_4

10_4 -

> | Exd' ¢ |- (39)

u
+ —
2m a,b=1

The partition function of Eq. (39) is formally equivalent to
that of a system in a quenched random field analyzed by
means of the replica trick, such as the random field Ising
model (RFIM). The only difference is that in this case the
limit m— 1 must be taken. We can thus use the techniques
developed to deal with such systems [19]. The matrix corre-
lation function of the problem of Eq. (39) obeys the follow-
ing Dyson equation:

GohK) =Gy 00 + k) =, (40)

where Gal(k) is the propagator of the free unreplicated
theory, Eq. (7), and (k) is the self-energy in the replica
space. If we find that, due to the ergodicity-breaking cou-
pling constant u, 3,,,(k) has finite off-diagonals elements, we
can conclude that there must be an energy landscape sensi-
tive to that infinitesimal perturbation, leading to a glassy dy-
namics. On the other hand, if the self-energy is diagonal, the
dynamics is ergodic and the system is in the liquid phase.

B. The self-consistent screening approximation

In the following we use the self-consistent screening ap-
proximation (SCSA) [18,19,25,26], which consists in intro-
ducing an N-component version of the model with ¢
=(¢,, ..., ¢y) and coupling constant g/N and summing self-
consistently all the diagrams of order 1/N (see Fig. 7). This
approximation is exact up to order 1/N. At the end of calcu-
lations we will consider the scalar case, N=1 [41]. Since the
attractive coupling between replicas is symmetric with re-
spect to the replica index, we assume the following structure
of the matrix correlation function:

G (k) =[G(k) = F(k)], + F(K), (41)

i.e., with diagonal elements G(k) and off-diagonal elements
F(K). It can be shown that for systems with quenched disor-
der (such as the RFIM), this ansatz turns out to be equivalent
to the one-step replica symmetry breaking ansatz (1RSB).
While the diagonal correlator can be interpreted as the usual
(one time) correlation function, i.e.,

TG(k) = (1), (42)

the off-diagonal term can be interpreted as measuring the
long-time correlations:

TF(k) = rliig«bk(t) ¢-x(0)). (43)

Hence, F(k) vanishes in the paramagnetic phase while it is
finite in the glassy one.

As shown in Ref. [26] and in Appendix D, within the
SCSA the expressions of the correlators can be found by
solving numerically a set of coupled integral equations, Egs.

10 b ’

1.05 1.1 L5 12

FIG. 2. (Color online) Main frame: Complexity, 3., as a function
of T/Tk for 4wW=0.5 (red dashed curve) and 47W=0.08 (black
continuous curve), for a fixed value of the range of the repulsive
potential, N=2, and for g=1 and ro=-1. At high temperature (7
>T,) the system is in the paramagnetic phase and the complexity is
zero. At T=T, the complexity discontinuously jumps to a finite
value, signaling the emergence of a complex free energy landscape.
The complexity decreases as the temperature is decreased and van-
ishes at Ty where the thermodynamic transition to a 1RSB glassy
phase takes place. [The complexity density has the dimensions of
an inverse volume (notice that we consider kz=1), whereas the
temperature is rescaled with respect to the Kauzmann temperature
and is, therefore, dimensionless.] Inset: Complexity at the dynami-
cal transition temperature, %(7,), plotted as a function of the
strength of the repulsive potential, 47W. As W decreases, %(T})
decreases. At W=W,, the glassy phase disappears. (The complexity
has the dimensions of an inverse volume, whereas W has the di-
mension of an energy divided by a length squared.)

(D8)—(D16). After that, according to Egs. (D19) and (D20)
we are able to compute the complexity, 3.

C. Results

We have fixed the range of the repulsive potential to A\
=2 and we have studied the behavior of the complexity for
different values of the strength of the repulsion, W, and of
the temperature 7. The model undergoes a glass transition of
the same nature of that found in discontinuous spin glasses
[13,25,26]. In Fig. 2 the behavior of the configurational en-
tropy is plotted for two different values of W as a function of
the temperature. For a given value of the strength of the
repulsion W, at high temperature, F(K) vanishes, leading to a
vanishing complexity, corresponding to the fact that the sys-
tem is in the liquid phase. At T=T,(W) the configurational
entropy jumps discontinuously to a finite value, signaling the
emergence of an exponentially large number of metastable
states. At this temperature a glassy dynamics sets in, corre-
sponding to a nonzero value of the long time correlation
function F(k). The complexity decreases as the temperature
is decreased and vanishes at Tx(W). At this temperature,
called the Kauzmann temperature, an ideal thermodynamic
glass transition to a 1RSB glassy phase takes place. Note
that, in agreement with the results presented in the previous
section, the glass transition disappears for N— o, when the
corrections due to the diagrams of order 1/N are not taken
into account.
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200

100

0 k. k 1

FIG. 3. Main frame: Momentum dependence of the correlation
function, G(k), for 47W=0.2 and A\=2 at T=T,, showing that it is
peaked around the typical modulation wave vector k,, with width
&1, given by the inverse of the correlation length, signaling the fact
that microphase structures establish over a finite range ¢ [G(Kk) has
the dimensions of an inverse volume, whereas the momentum has
the dimensions of an inverse length. In this paper, the length is
measured with respect to the elementary lattice spacing, set equal to
one.] Inset: Momentum dependence of the nonergodicity parameter,
fx for the same values of W, \ and T. (The nonergodicity parameter
is dimensionless.)

In order to characterize the nature of the glass transition,
we examine the properties of the correlation functions [13].
In the main frame of Fig. 3 the diagonal part of the cor-
relator, G(k), is plotted as a function of the wave vector at
the dynamical transition temperature 7, showing that the
correlation function is clearly peaked around a maximum
located in k,,, whose value is given in Eq. (14). As shown in
the next section, the width of such a maximum, & I allows
us to identify the inverse of the correlation length. The shape
of G(k) indicates that, although no periodic order occurs
(¢ )=0), a lamellar structure of wavelength L,=27k;
over a finite range ¢ is formed. These microphase structures
are the analog of the cluster phase observed in colloidal sys-
tems. The system forms a mosaic of such modulated struc-
tures, periodically ordered over length scales smaller than the
correlation length &, and randomly assembled in a disordered
fashion over larger length scales. The defects and the imper-
fections in the perfect stripe arrangements give rise to the
tails in the correlation function. The lower the temperature,
the more pronounced is the peak of G(k) around the maxi-
mum in k,,, signaling the fact that £ increases as the tempera-
ture is decreased. At T=T,, where £=2/,,, these microphase
structures establish over a length larger than their modulation
length and become frozen. The glass transition arises from
the fact that there are many possible configurations to ar-
range such modulated structures in a disordered fashion,
leading to the emergence of metastable states.

The characteristic wavelength, k;f, also dominates the dy-
namics as indicated by the momentum dependence of the
nonergodicity parameter

P i (DD D4(0)) _ FK)
b e (D0 Gk)

plotted in the inset of Fig. 3 at T=T,. Basically, fi, represents
the height of the plateau reached by the correlation function

(44)

PHYSICAL REVIEW E 75, 011410 (2007)
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FIG. 4. (Color online) Main frame: Dynamical (blue curve and
triangles) and thermodynamical (red curve and diamonds) transition
temperature to the glassy phase, as a function of the strength of the
repulsive potential, 47W, for N=2. [The temperature is rescaled
with respect to the critical temperature of the unfrustrated model,
T.(W=0), and is, therefore, dimensionless. W has the dimensions of
an energy divided by a length squared.] Inset: Values of the renor-
malized mass, r; and rg, corresponding, respectively, to the dy-
namical and the thermodynamical glass transition temperatures, as a
function of 477W. In the figure the difference between ry(W) (red
curve and triangles) and rg(W) (blue curve and diamonds) and the
minimum value of the renormalized mass, r,,(W), is plotted. The
figure shows that as W— W,, both r,; and rg approach r,(W), sig-
naling that T, x(W,)=0. (r has the dimensions of an energy.)

of the density fluctuations of wave vector k after infinite
time. From Eq. (44) one immediately observes that as
F(k)=0 (T>T,), also the nonergodicity parameter, f}, van-
ishes: the system is in an ergodic phase, since all the corre-
lation functions relax to zero. On the other hand, at T=T, the
ergodicity is broken. The presence of a maximum of fy lo-
cated in |k| =k, signals the fact that structural arrest is more
pronounced over length scales of order /,,. The width of the
maximum of the nonergodicity parameter, Y~!, can be tied to
the emergence of different length scales. Indeed, the height
of the plateau decays as ||k|-k,,| >Y~!, and Y represents the
typical length scale over which defects and imperfections in
the periodically modulated pattern are allowed to wander and
to diffuse over long times [25,26].

In Fig. 4 the dynamical transition temperature 7,(W) and
the ideal one Tx(W) are plotted as a function of the frustra-
tion 47W, for a fixed value of the range of the repulsive
potential, A=2. It is also interesting to study the behavior of
ry(W) and rg(W), i.e., the values of the renormalized mass r
corresponding, respectively, to the dynamical and to the ther-
modynamical transition temperature. More precisely, in the
inset of Fig. 4, r(W)—r,,(W) and rg(W)—-r,,(W) are plotted,
where rsp( W) is the minimum value of the renormalized mass
(corresponding to T=0), whose expression is given in Eq.
(30). The figure clearly shows that the glassy phase disap-
pears as W— W,, where we find that r, x(W.) —r,,(W,), i.e.,
T,W.)=Tg(W)=0. [Nevertheless, we have that
limy_ y+Ty (W) # T, (W,.)=0.] These results can be inter-
preted if one observes that, according to Eq. (14), the size of
the modulated structures increases as W is decreased and
diverges as W— W,. In fact, for purely geometrical reasons,
the larger the modulation length, the smaller is the number of

011410-8



LAMELLAR ORDER, MICROPHASE STRUCTURES, AND...

metastable configurations to arrange the microphase struc-
tures in a disordered fashion. As a consequence, the number
of metastable states (i.e., the complexity) vanishes as W
— W, and the glassy phase disappears. This is clearly out-
lined by the inset of Fig. 2, which shows that the complexity
computed at the dynamical transition temperature tends to
zero as W—W..

VI. MODULATED STRUCTURES AND CHARACTERISTIC
LENGTH SCALES

In this section we analyze more accurately the nature of
the microphase structures which are formed due to the com-
petition between attraction and repulsion on different length
scales. This investigation provides many insights on the na-
ture of the cluster phase observed in colloidal suspensions
and on the physical mechanisms inducing the structural ar-
rest in these systems.

Let us consider the case W>W,, where the correlation
function, G(k), is peaked around the typical modulation
wave vector, k,,,. In the following we compute the correlation
function in real space (within the self-consistent Hartree ap-
proximation, or, equivalently, in the spherical limit) and we
show that different length scales emerge in the system
[23,42]. The pair correlator in real space is determined by
computing the Fourier transform of G(k), given in Eq. (7):

— 1 3 ik-x
G(x) = ) f d’kG(k)e
k()\ + kz)sm(kx)
%ﬂﬂj o)
where
R R S R U S e i

K= (46)

2
The above equation marks a crossover temperature 7%, cor-
responding to the temperature at which the renormalized
mass equals:

=N 2\4TW. (47)

A. High temperature: r>r*

For high enough temperatures, r>r* (i.e., T>T"), the
argument of the square root of the right hand side of Eq. (46)
is positive. Consequently, > and «* assume real values and
the integral, Eq. (45), can be easily evaluated by applying the
residue theorem to the poles lying on the imaginary axis at
k==+i{, *ik, leading to

T8 = AP+ (2= i P)e ]
47‘r|X|(§2 - &) ’

G(x) = (48)

The above expression clearly indicates the emergence of two
characteristic length scales, &=|R{Z}|™" and I,=|R{x}|"!
The former plays the role of the correlation length of the
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FIG. 5. (Color online) Temperature dependence of the charac-
teristic length scales. At high temperatures, 7> T*, the system be-
haves as a fluid of charges of linear size & (red curve) and screening
length [, (black curve). At T* this description breaks down and the
competition between attraction and repulsion produces microphase
structures with interstripe distance /,, (blue curve), established over
a finite range & The modulation length, /,,, decreases as the tem-
perature is decreased and at low temperature equals 2mk;'. Con-
versely, the correlation length, & increases as the temperature is
decreased and diverges at 7— 0 at the spinodal line of the homo-
geneous phase. Glassiness emerges when £=2/,,. On the contrary,
the modulated structures progressively fade as £<1,. [All the
lengths are measured in terms of an elementary lattice-spacing
length, set equal to one. The temperature is scaled with respect to
the critical temperature of the unfrustrated model, 7.(W=0), and is,
therefore, dimensionless.

canonical short-range ferromagnet and at high temperature
behaves as

E~ 12, (49)

The other length [, instead, is a renormalized screening
length, and for high temperature tends to

Ip~ X\, (50)

the range of the repulsive potential. Therefore, the system at
high temperatures, 7> T, behaves as a fluid of charges of
linear size & and screening length /. The temperature depen-
dence of ¢ and [ is shown in Fig. 5.

B. Low temperature: r <r*

Conversely, for r<r* (i.e., T<T*) the argument of the
square root of Eq. (46) becomes negative. Consequently, £
and «? assume complex values. The analytic continuation of
Eq. (48) to the low temperature region reads

e—K1IX\[(2K1K2 —

G(x) = N"?)cos(ry|x|)

167Xk, K5
+ (13 = 11 = N )sin(i, X)), (51)
where x=k+ik,. This expression implies that, although no
periodic order occurs (( d)km}:O), a lamellar structure of

wavelength /,, over a finite range ¢ is formed. The modula-
tion length is given by
L, =27k =472+ daW—r = \"H)712, (52)

whereas, according to Eq. (51), the correlation length reads
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E=|r| " =2[(r+ N2+ 2NN T2 AW (53)

and gives the range over which the microphase structures are
formed. The temperature dependence of the characteristic
length scales present in the system is shown in Fig. 5. The
correlation length increases as the temperature is decreased
and diverges as T goes to zero, where the spinodal line of the
paramagnetic phase is located. At low temperatures we have
l,,,:277k;1', where k,, is the characteristic wave vector defined
in Eq. (14). Conversely, as T— T*~, the modulation length /,,
diverges as (r*—r)~!2, Interestingly enough, it turns out that
the glass transition emerges at temperatures at which &
=2/, as conjectured in Ref. [26]: the microphase structures
form over a length larger than their modulation length and
become frozen. The glass transition arises from the fact that
there are many possible configurations to arrange such
modulated structures in a disordered fashion, leading to a
great number of metastable states. As the temperature is in-
creased, the cluster phase continuously fades approximately
at the temperature at which £</,,: the microphase structures
are ordered over a length scale smaller than their own modu-
lation length and the system becomes homogeneous. Such a
crossover temperature at which approximately the modulated
structures fade and the system is homogeneous corresponds
to the black dotted line of Fig. 6.

VII. PHASE DIAGRAM AND CONCLUDING REMARKS

The results found in the previous sections are summarized
in Fig. 6, where the complete phase diagram of the system is
presented, showing the relative position of the different
phases. The model, albeit schematically, retains the essential
physics of charged colloids in polymeric solutions, where the
competition between attraction and repulsion on different
length scales plays a prominent role. The results found pro-
vide many insights on the equilibrium phase diagram of col-
loidal suspensions, as well as on the physical mechanisms
responsible for the formation of modulated structures and for
the structural arrest.

We point out that in our model, for W> W, the competi-
tion between attraction and repulsion has the effect to pro-
duce microphase structures, which are the analog of the clus-
ter phase observed in colloidal systems, characterized by a
peak in the structure factor around a wave vector correspond-
ing to the inverse of the typical size of the clusters. The
width of the peak is related to the correlation length, which
represents the range over which such modulated structures
are locally ordered. In our model the modulated structures
are the precursors of an equilibrium lamellar phase occurring
at lower temperature. Therefore, according to this analogy,
our results suggest that the cluster phase observed in colloi-
dal suspensions might be the sign of the presence in the
system phase diagram of an equilibrium lamellar phase,
which is very often kinetically avoided on the experimental
time scales. Such an underlying equilibrium ordered phase
may strongly affect the dynamics of the system in the low
temperature region, close to the colloidal gelation. The pres-
ence of a stripe/columnar/lamellar phase in the phase dia-
gram and the emergence of microphase structures has been
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FIG. 6. (Color online) System phase diagram in the frustration
(47W)-temperature (7) plane, for a fixed value of the screening
length of the repulsive potential, \=2, and for g=1 and ry=—1. The
temperature is scaled with respect to the critical temperature of the
unfrustrated system, T.(W=0)==27%ry/3gA (and is, therefore di-
mensionless). For W<W, a second order phase transition with the
usual Hartree critical exponents from a paramagnetic phase (P) to a
ferromagnetic (F) one is found, by lowering the temperature below
T.(W,\) (red continuous curve). In the terminology of colloidal
systems this corresponds to a phase separation between a colloid-
rich and a colloid-poor phase. For W> W,. the phase separation is
prevented and, instead, a first order transition to a lamellar phase
(L), characterized by a periodic variation of the density, is found at
T;(W,\) (blue dashed line). Such a first order transition can be
avoided and, in this case, at lower temperature a transition to a
glassy phase (G) is found, characterized by a dynamical, T,,(W,\)
(green dotted curve), and by a thermodynamical, Tx(W,\) (ma-
genta dashed-dotted curve) transition. The black dotted line repre-
sents a crossover temperature, corresponding to the temperature at
which the correlation and the modulation lengths equal §=1/,,, and
the system establishes microphase structures, which are the analog
of the clusters observed in colloidal systems. (W has the dimensions
of an energy divided by a length squared.)

clearly shown in recent numerical simulations of model sys-
tems of particles interacting via the DLVO potential both in
two [11,12] and in three dimensions [14], where the presence
of first order transitions from a cluster phase to periodically
ordered phases has been clearly detected.

The nature of the glass transition found in our model
gives many insights on the nature of the mechanisms induc-
ing the phenomenon of colloidal gelation. We suggest that
the structural arrest in colloidal suspensions might be due to
the formation of microphase structures, which are ordered on
small length scales, and are assembled together in a disor-
dered fashion on larger length scales, thereby inducing a
complex free energy landscape and, consequently, a complex
and slow dynamics.

Notice that in our model there is no geometric frustration
due to the hard-core excluded volume, which is totally ab-
sent in the Hamiltonian. The frustration lies only in the com-
petition between attractive and repulsive interactions on dif-
ferent length scales. Therefore, our results seem to indicate
that the physical mechanism inducing the structural arrest in
charged colloids is totally different from that responsible for
the jamming and the glass transition in molecular liquids at
high volume fraction.

In real experiments the addition of salt increases the num-
ber of ions in the solution, thereby decreasing the strength of
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the repulsive shoulder of the potential. Our results suggest
that there is a critical value of the ions concentration (corre-
sponding to W,) above which no modulated structures are
formed and the system undergoes, instead, a phase separation
between a colloid-rich and a colloid-poor region.

All these predictions could be experimentally and numeri-
cally checked.
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APPENDIX A: CRITICAL EXPONENTS OF THE
FERROMAGNETIC TRANSITION IN THE HARTREE
APPROXIMATION

In this Appendix we compute the critical exponents of the
second order ferromagnetic phase transition found within the
self-consistent Hartree approximation for W<W.,.

As shown in Sec. III, for W<W_, the correlation function,
G(k), has a maximum in |k|=0, where it equals 7/(r
+47W\?). Therefore, as r— r,=—4mW\?, the susceptibility,
x=G([k|=0)/T diverges, corresponding to a second order
critical point. Since the divergence occurs around |k|=0, in
order to determine the critical behavior, we can expand the
Hamiltonian of Eq. (4) up to the lowest orders in k%, as done
in Eq. (17), neglecting the other irrelevant terms. According
to Eq. (7), the susceptibility reads

X =r+4aW\l=r-r.=r1. (A1)

Replacing r and r, with their expressions obtained via the
self-consistent relation, Eq. (10), and expanding the correla-
tors up to O(k?), we get

3¢ (M T
§ dk{

T=""

27 J, r+47WA2 + (1 - 47WAHK?
T.
- . A2
(1- 417W)\4)k2} (42)
Now, we define the function I(7) as
A 1
I(7) = dk . A3
(7 JO e (A3)

Recalling that r=r—r,=r+47W\>=1-W/W, and that c=1
—47WA* (note that c=0 for W=W.,), in terms of the function
I(7) Eq. (A2) can be written as

3g(T-T,) (*  ck*  3gT.
T= 5= 7I(7).
27 o THck* 21
The first integral appearing in the previous equation ap-

proaches a constant as 7— (0, whereas the integral I(7) is
divergent as 7—0 as

(Ad)
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I(7) ~ 712, (A5)

To the leading order in 7, the left hand side of Eq. (A4) can
be neglected, leading to

T-T.~ 7", (A6)
and, thus:
X'=7'~(T-T)™. (A7)
This allows us to determine the exponent y:
v=2. (A8)

Within the self-consistent Hartree approximation, there are
no k-dependent corrections to the mean field propagator, all
the corrections being included in the renormalized mass, r.
Therefore,

x(K) =[7+ (1 —4mWA\HEPT" = X1+ (kO°T",  (A9)
where
E=(1-4mW\Y/7~(T-T,)7>. (A10)
This immediately leads to
Y
=2=1, All
v=> (A11)

Similarly, it is possible to verify that also for W>W_, at the
spinodal line of the paramagnetic phase, located at 7=0, the
susceptibility, x(k,,), and the correlation length, £ diverge
with the usual Hartree critical exponents.

APPENDIX B: FLUCTUATION-INDUCED FIRST ORDER
TRANSITION TO THE LAMELLAR PHASE

In this Appendix we determine the first order transition
temperature T;(W,\) from the homogeneous phase to the
lamellar phase. We follow the approach taken in Ref. [27] for
the Coulomb case and we generalize it to the case of a finite
screening length of the repulsive potential. Let us introduce a
spatially varying external field, Ay, linearly coupled to the
order parameter field ¢. As a result, ¢y is now the sum of an
average component, my={¢y), and a fluctuation around it
&= ¢ .—my. The resulting equation of state for the average
components reads [27]:

kK= ro+ + )\_2+k2 my+g (277)% (2)77_)3[71’11(11711(2

+3G(ky ko) Iy ik, (B1)

where the connected correlation function G(k,k')=(&.&.),
is obtained self-consistently by solving

_ , 47W ,
TG '(k,k') = <r0+k2+m)5(k+k )
d’q ,
+3¢ _(277_)3[mqu+k’—q+G(qsk+k -q)],

(B2)

together with the unitarity condition:
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3
f (§:3G“(k,q)G(q,k’) =ok-k'). (B3

Note that in the paramagnetic phase, when all %y, and m, are
equal to zero, Egs. (B1) and (B2) reduce to Eq. (10) with
G(k,k")=G(k)s(k+k').

In the lamellar phase, characterized by the periodic order,
instead, we consider

h=h[8k-Kk,)+ 8k +Kk,)], (B4)
and
m=m[ 8k -K,,) + Kk +K,)], (B5)

where k,, is given in Eq. (14). As shown by Brazovskii for a
related model [34], in this region, the fluctuations of wave
vector k with |k|=k,, are dominant, and the effect of the
off-diagonal terms with k#k’ can be neglected in the cor-
relation function. As a result,

47w

-1 2
TG '(K)=r+k +m.

(B6)

This expression is formally equivalent to that of Eq. (10).
However, in the case of a phase characterized by Egs. (B4)
and (B5) the renormalized mass, r, is given by

d’k
r=ry+3g f w[G(k) + ]

; f d’k T
=rpt+2g 3
2
(2m) r+k?

47w
b
N2+ K2

+6gm>. (B7)

By introducing Eqgs. (B4)—(B7) in Eq. (B1) and recalling Eq.
(14), one obtains the following equation of state:

h=|ro+2V4mW—\"?

+3 f Tk L L agmp
8l @mp ) amw TSN
r+kit
N +k
=(r+2V47W = \"2 = 3g|m[*)m. (B8)

When we do not consider fluctuations (r— ry), the last equa-
tion gives the mean field result.

Below some temperature, there is a coexistence of the
paramagnetic phase and the lamellar phase. In zero field (4
=0), the former is characterized by m=0 and the latter by
m# 0, where m is the solution of Eq. (B8), i.e. (r+2vV47W
—\"2-3g|m|*=0. The transition point, which is then asso-
ciated with a first order transition, is obtained as the tempera-
ture at which the free energies of the two phases are equal. It
is convenient to calculate directly the free energy difference
AF(T) between the lamellar (m #0) and the paramagnetic
(m=0) phase at a given temperature T [27]:
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m aF m
AF:J dm'—/:Zf dm'h(m’), (B9)

0 dm 0
where h(m’) is given by Eq. (B8). Changing the integration
variable from m’ to r'(m') solution of Eq. (B7), after some
algebra we obtain

r(m) ’
+
gAF:J dr'| 20 o amw - a2
r(m=0)
3gT k2
+— | dk
4 ;. AmW
rr+k+ 5
N+ k
[ Lo 8T [ g K
6 4 ;o Amw )
r+k+ ———
N +k
(B10)

where r(m=0) is the solution of Eq. (10) whereas r(m) and
m are solutions of the following coupled equations:
A — \—2 2
r+2V4mW - \"%-3glm|*=0
d’k T
2m)? 47w
@m) r+ k> + _277 5
NT+k

r=ry+3g +6g|m|*.

(B11)

By solving Egs. (B10) and (BI1) numerically for several
values of W and T (and for g=1, ry=—1 and A=2), we have
found that, for any given value of W, the sign of AF changes
at a finite value of 7=T,, that marks the first order transition
between paramagnetic and lamellar phases. The results are
shown in Figs. 1 and 6. We also solved Egs. (B9)-(B11) for
several values of W and A keeping the temperature 7 fixed.
The transition line in the frustration (W)-range (\) plane is
shown in the inset of Fig. 1.

APPENDIX C: SELF-CONSISTENT SOLUTION FOR THE
DYNAMICS IN THE SPHERICAL LIMIT

In this section we discuss the self-consistent solution of
the dynamics of the model in the spherical approximation.
More precisely, our aim is to solve self-consistently Egs. (21)
and (22). In order to do so we remember that

A d’k
Q(t)=r+gwa(k,t). (C1)

From Eq. (21), we note that G(k,7) has a maximum at a
wave vector k,,,.(¢) given by

4WN 2t
N2+ k(O
which gives the expression of Q(¢) in terms of the peak po-

sition k,,,,(¢). Inserting Eq. (C2) into Eq. (21) we obtain that
G(k,1)=G(Kk,0)e ™MD where

O(1) == 2k, (1)1 — (C2)
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AW 2k2
N2+ k(D]
(C3)

4TWk*
flen) == "5+ Kt = 207K (1) =

Obviously, f(k,t) has a minimum for k=k,,,(¢).

Now we can evaluate the integral in Eq. (C1) by means of
the saddle point method, provided that Mr is large. This
yields

. Ko (t
o) =r+ B—,—"””( )
M tf" (Ko T)

y [Mt(l %—W)
P TR, (OT

where B=2g(7/2)*2G(k,,,,,0). Now, we can relate Q(7) to
kypar(f) through Eq. (C2) and, inserting the result in the pre-
vious equation, we obtain Eq. (23). The function P equals:

ki‘,,ax(r)] (C4)

A7WN2

_1 —r=2k2 TN+ E (O]

- 4tkma’V(t) F[kmax(t)]dkm—axm} s

dr (C5)
where F(k,,,(t)) is defined as:
4w
Flkya()]= {1 - m} (Co)

Inserting the right hand side of Eq. (23) into the expression
of the time dependent structure factor we obtain

PNM1F[k,,,,(1)]
kmax(t)

where Af(k,t)=f(k,t)—f(k,-t). The position of the peak is
given by the solution of Eq. (23). Taking the logarithm of
both sides of Eq. (23) and dividing by Mr we obtain an
asymptotic expression for k,,,,(f) which is readily analyzed
in the limit 7 — co.

47W 4
(et

I 22 (1) L
ny—r-— _——
e I k(0]
Mt

1In{ LK1} IRy (1)]
"3 Mt Mt

G(k,1) = G(k,O){ }e—MfAf(k,t)’ (C7)

(C8)

where we have neglected the terms which vanish in the
asymptotic limit, r— . As explained in Sec. IV, depending
on the values of W and \, different solutions of the previous
equation are found. In particular, one needs again to distin-
guish between the cases W< W, and W>W..
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APPENDIX D: SELF-CONSISTENT SCREENING
APPROXIMATION

Here we discuss how to compute the complexity within
the SCSA. This section is unessential, since all the calcula-
tions have been already extensively reported in the literature
(see Ref. [26]). Nevertheless, we believe that this Appendix
might be useful for the sake of completeness.

Following Ref. [26], we first summarize a few properties
of the matrices in the replica space with structure similar to
Eq. (41). Introducing a matrix E such that E,=1 and the
unitary matrix 1=43,,, it is easy to see that the product of any
two m X m matrices with structure:

A=a,1+aE (DI1)
is given by
A -B=(a,b)1+ (a,b, + ayb, + ma,b,)E. (D2)
This relation leads to
Al = . a (D3)
a,  ay(a,+ma,)

for the inverse of a matrix A. These properties will be used
in the following.
In the SCSA, the self-energy 2, is given by (see Fig. 7):

2 [ d&
Eab(k) = ]T[ f (2_733Gab(k + q)Dab(q) P (D4)

where

Dgp(q) =[(¢7) ™" +T,(q)]"! (D5)

is determined self-consistently by the polarization function

d’p
Hab(q) = f WGab(q + p)Gba(p) (D6)

The ansatz Eq. (41) for the correlation functions implies an
analogous structure for 2,,(k) and II,(K). Inserting this an-
satz into I1,,(q) gives

I(q) = [Tg(q) - T q)]1 + [Iq)E, (D7)

where the diagonal and off-diagonal elements of the polar-
ization function are

G Gy’ .

O pm

FIG. 7. Diagrams of the self-consistent screening approximation
[17,18,25,26].
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d3
)= | 0@ PIG),

d’p
2m)?

F(q+p)F(p). (D8)

Aq)= f

Using the property expressed in Eq. (D2), it is now straight-
forward to determine D,,(q) which, in the limit m— 1, is
given by

Dg(q) =[Dg(q) - DAq@)]1 + DAQ)E, (D9)
where
Dy(q) = [(gT)" + Hg(‘l)]_l ,
11 4q)D5(q)
1 =11 Aq)Dg(q) '

Analogously, inserting the above equation into Eq. (D4), we
get for the self-energies

DHq)=- (D10)

2@ =[2¢@) -2HQII+2HQE, (D11
where
3
Sio=y [ SEosarn. O
3
sio=% [ o a1

This set of equations is closed by the Dyson equation, Eq.
(40):

Gy(K) =[Gy(k) + Zg(K) = 3 7(K)]8,, + S AK),
(D14)
which, in the limit m — 1, according to Eq. (D3), gives
G (k) = Gy ' (k) + (k) (D15)

for the diagonal elements, and
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G (k)2 (k)

O == oS 0

1
M7 g0 500

(D16)

for the off-diagonal ones.
Within the self-consistent screening approximation, the
free energy assumes the following expression [18,19,25,26]:

F
ﬁ:TrlnG‘1+TrlnD‘1+TrGE.

D17
2mT ( )

The evaluation of the traces in the replica space is straight-
forward. After that we are able to perform the derivative with
respect to the number of replicas in order to compute the
complexity, %, according to Eq. (38). To this aim we have to
take the analytical continuation to m— 1. The configura-
tional entropy can be written as the sum of two contributions
[25,26]:

3=31+30), (D18)

where

<1>_lf &’k (_@) Fk)

=) e ™ o0 ) oo [ P

and

o_ L[ 4k {_ gTHf(k)> STTI (k)

2020 ) G | a0 T 1 gy |
(D20)

From Egs. (D19) and (D20) and Eq. (D16), it immediately
follows that 3,=0 if F(k) vanishes or, equivalently, if > k)
vanishes.

Solving numerically Egs. (D8)—(D16) we get the expres-
sions of the correlators, G(k) and F(k), of the self-energies,
35(k) and X Ak), and of the polarization functions, IT5(k)
and I k). Then, according to Egs. (D19) and (D20) we are
able to compute the complexity, 2.
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